Expertin
Prof. (FH) Dr. rer. nat. Dipl.-Phys. Bettina Friedel

Expertise

Energie: Research focus: - materials for energy conversion and storage - structure-property relationships on the nano-and microscale - optoelectronics

Schlagworte

  • Organische Halbleiter
  • Wide-Band Gap Halbleiter
  • Optoelektronik
  • Sol-Gel Chemie
  • Structure-Property Relationships in elektronischen Materialien
  • Mikrotomographie
  • Siliziumkarbid
  • Ionen-Speichermaterialien
  • Polymerphysik

Verfügbar für

    Jury
    Kooperationen
    Projektleitung
    Projektmitarbeit

Beruflich

Oberes Management

Tätigkeitsbereiche:
  • Universität
  • Fachhochschule

Ausbildung

Universität (2003)
Physik, Mechanik, Astronomie

Zusatzausbildung(en)
Intellectual Property Rights Research Group Management Hochschuldidaktik Strahlenschutz Gift-Sachkunde

Weitere Fachrichtungen, weitere Ausbildungen
Doktorat in Physik/Chemie

Sprachen

  • Deutsch
  • Englisch
  • Französisch
  • Latein
Mehr Details
  • Deutsch

    Schriftlich: Muttersprache / wie Muttersprache
    Konversation: Muttersprache / wie Muttersprache

  • Englisch

    Schriftlich: Muttersprache / wie Muttersprache
    Konversation: Muttersprache / wie Muttersprache

  • Französisch

    Schriftlich: Grundkenntnisse
    Konversation: Grundkenntnisse

  • Latein

    Schriftlich: Gute Kenntnisse
    Konversation: Gute Kenntnisse

Referenzen

Publikationen

Characterization of Surface and Structure of In Situ Doped Sol‐Gel‐Derived Silicon Carbide; O. Kettner, S. Šimić, B. Kunert, R. Schennach, R. Resel, T. Grießer, B. Friedel, Advanced Engineering Materials, 20 (2018) 1701067, DOI: 10.1002/adem.201701067

Influence of Environmentally Affected Hole-Transport Layers on Spatial Homogeneity and Charge-Transport Dynamics of Organic Solar Cells; H.-T. Chien, F. Pilat, T. Griesser, H. Fitzek, P. Poelt, B. Friedel, ACS Applied Materials & Interfaces, 10 (2018) 10102–10114, DOI: 10.1021/acsami.7b19442

Short-Term Environmental Effects and Their Influence on Spatial Homogeneity of Organic Solar Cell Functionality; H.-T. Chien, P. W. Zach, B. Friedel, ACS Appl. Mater. Interfaces, 9 (2017), 27754-27764, DOI: 10.1021/acsami.7b08365

Regenerated Cellulose Fiber Solar Cell; M. Ebner, R. Schennach, H.-T. Chien, C. Mayrhofer, A. Zankel, B. Friedel, Flex. Print. Electron., 2 (2017) 014002, DOI: 10.1088/2058-8585/aa5707

Effects of hole-transport layer homogeneity in organic solar cells – A multi-length scale study; H.-T. Chien, M. Pölzl, G. Koller, S. Challinger, C. Fairbairn, I. Baikie, M. Kratzer, C. Teichert, B. Friedel, Surfaces and Interfaces, 6 (2017) 72-80, DOI: 10.1016/j.surfin.2016.11.008

A comparison of copper indium sulfide/polymer nanocomposite solar cells in inverted and regular device architecture; S.Dunst, T. Rath, A. Reichmann, H.-T. Chien, B. Friedel, G. Trimmel, Synthetic Metals, 222 (2016) 115-123, DOI: 10.1016/j.synthmet.2016.04.003

Alternating Side-Chain Geometries for Aggregation Control of Poly(fluorene-alt-bithiophene) and their Effects on Photophysics and Charge Transport; O. Kettner, A. Pein, G. Trimmel, P. Christian, C. Röthel,  I. Salzmann, R. Resel, G. Lakhwani, F. Lombeck, M. Sommer,B. Friedel, Synthetic Metals, 220 (2016) 162-173,  DOI: 10.1016/j.synthmet.2016.06.010

The Potential of P3HT:3C-SiC Composite Structures for Hybrid Photovoltaics; invited paper  in NNL special section:  Functional Polymers; O. Kettner, C. Finlayson, B. Friedel, Nanoscience and Nanotechnology Letters, 7 (2015) 56-61, DOI: http://dx.doi.org/10.1166/nnl.2015.1928

Organic photodiodes based on wood-cellulose fiber networks; H. Kopeinik, R. Schennach, J. Gallik, H. Plank, B. Friedel, Cellulose 22 (2015) 3425-3434, DOI: 10.1007/s10570-015-0739-3

Interfacial Morphology and Effects on Device Performance of Organic Bilayer Heterojunction Solar Cells; M. Zawodzki, R. Resel, M. Sferrazza, B. Friedel, ACS Appl. Mater. Interfaces, 7 (2015), 16161–16168, DOI: 10.1021/acsami.5b04972

Bismuth sulphide/polymer nanocomposites from a highly soluble bismuth xanthate precursor; V. Kaltenhauser, T. Rath, W. Haas, A.Torvisco, S. K. Müller, B. Friedel, B. Kunert, R. Saf, F. Hofer, G. Trimmel, J. Mater. Chem. C, 1 (2013) 7825-7832, DOI: 10.1039/C3TC31684J

Enhanced Nanoscale Imaging of Polymer Blends by Temperature-Controlled Selective Dissolution; B. Friedel, B. Ehrler, S. Hüttner, N. C. Greenham,  Small, 8 (2012) 237-240, DOI: 10.1002/smll.201101860

Influence of solution heating on the properties of PEDOT:PSS colloidal solutions and impact on the device performance of polymer solar cells; B. Friedel, T. J. K. Brenner, C. R. McNeill, U. Steiner, N. C. Greenham, Organic Electronics, 12 (2011) 1736-1745, DOI: 10.1016/j.orgel.2011.07.003

Influence of Alkyl Side-Chain Length on the Performance of Poly(3-alkylthiophene)/Polyfluorene All-Polymer Solar Cells; B. Friedel, C. R. McNeill, N. C. Greenham,  Chemistry of Materials, 22 (2010) 3389-3398, DOI: 10.1021/cm100189t

Paramagnetic Signature of Microcrystalline Silicon Carbide

A. Konopka, B. Ascedilik, U. Gerstmann, E. Rauls, N. J. Vollmers, M. Rohrmüller, W. G. Schmidt, B. Friedel, S. Greulich-Weber, IOP Conference Series: Materials Science and Engineering 15 (2010) 012013, DOI: 10.1088/1757-899X/15/1/012013

Effects of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors; B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, N. C. Greenham,  Macromolecules, 42 (2009) 6741-6747, DOI: 10.1021/ma901182u

Textile Solar Cells based on SiC microwires; S. Greulich-Weber, M. Zoeller, B. Friedel, Silicon Carbide and Related Materials 2008, Book Series: Materials Science Forum, vol. 615-617, p. 239-242 (2009), DOI: 10.4028/www.scientific.net/MSF.615-617.239

Bottom-up Routes to Porous Silicon Carbide; S. Greulich-Weber, B. Friedel, Silicon Carbide and Related Materials 2008, Book Series: Materials Science Forum, vol. 615-617, p. 637-640 (2009), DOI: 10.4028/www.scientific.net/MSF.615-617.637

Alternative routes to porous silicon carbide; B. Friedel, S. Greulich-Weber, Mater. Res. Soc. Symp. Proc. 1069 (2008) D01-03, DOI: 10.1557/PROC-1069-D01-03

Wide Bandgap Semiconductors - Nanowires of p- and n-type Silicon Carbide; B. Friedel, S. Greulich-Weber, Mater. Res. Soc. Symp. Proc. 963 (2007) Q15-10, DOI: 10.1557/PROC-0963-Q15-10

Spherical Carbon Nanostructures - A Versatile Material for Sensing and Energy Storage; B. Friedel, S. Greulich-Weber, Mater. Res. Soc. Symp. Proc. 951 (2007) E06-27, DOI: 10.1557/PROC-0951-E06-27

Preparation of Monodisperse, Submicrometer Carbon Spheres by Pyrolysis of Melamine-Formaldehyde Resin; B. Friedel, S. Greulich-Weber,  Small 2 (2006) 859-863, DOI: 10.1002/smll.200500516

Sol-gel silicon carbide for photonic applications; B. Friedel, S. Greulich-Weber, Silicon Carbide and Related Materials 2005, Pts 1 and 2, Book Series: Materials Science Forum, vol. 527-529, p. 759-762 (2006), DOI: 10.4028/www.scientific.net/MSF.527-529.759

 

Patents

“Photovoltaic Device”  DE 102006047045,   WO 2008040333,  US 20100000599; Inventors: B. Friedel, S. Greulich-Weber; Applicant: Univ. of Paderborn, Germany; Object: Hybrid solar cell based on silicon carbide fibers and conjugated polymers

“Method for Producing an Object at least partially with a Silicon Carbide Structure from a Blank of a Carbon-Containing Material”; DE 102006055469, WO 2008061521,  US 2010065991; Inventors: B. Friedel, S. Greulich-Weber; Applicant: Univ. of Paderborn, Germany ; Object: Process for converting graphite parts into silicon carbide parts via a sol-gel derived precursor

 

Bettina Friedel
Prof. (FH) Dr. rer. nat. Dipl.-Phys. Bettina Friedel

Forschungszentrum Energie, Fachhochschule Vorarlberg

Kontakt

Letzte Aktualisierung: 04.05.2020